Типы данных и переменные. Сколько «весят» типы данных Диапазон типов данных с

Ответ:
  1. Целочисельные типы данных:

short int , unsigned short int , int , unsigned int , long , unsigned long .

  1. Типы данных с плавающей запятой (соответствуют вещественным типам):

float , double , long double .

  1. Символьный тип данных:

char (signed char ), unsigned char, wchar_t .

  1. Логический тип данных:

bool .

  1. Перечислимый тип данных (введен в Visual C++ ):

enum .

2. Какие особенности использования целочисленных типов данных?

В C++ основные целочисленные типы данных: short int , unsigned short int , int , unsigned int , long (long int ), unsigned long (unsigned long int ).

Эти типы данных представляют значения из множества целых чисел. Например:

2 -100 398

Типы данных, которые начинаются из приставки unsigned , могут содержать только положительные числа.

Данные типа short int , unsigned short int занимают в два раза меньше места в памяти чем данные типа int , unsigned int .

Данные типа long , unsigned long занимают в два раза больше места в памяти чем данные типа int , unsigned int .

3. Как в программе описать переменную с именем x целого типа?

Ответ:
int x; // целое со знаком

В результате под переменную x будет выделено место в памяти размером 4 байта. Размер памяти, которая выделяется под переменную зависит от характеристик компьютера, типа операционной системы и настроек компилятора.

4. Как в переменную целого типа записать число 239?

Для этого используется оператор присваивания, который обозначается символом ‘= ‘.

Ответ 1. Внесение числа в переменную после ее описания.

int x; x = 239;

Ответ 2. Внесение числа в переменную во время ее описания (начальная инициализация).

int x = 239;

5. Какие особенности типов данных с плавающей запятой?

Типы данных с плавающей запятой разрешают представлять значения из множества вещественных чисел. Например:

8.35 -990.399 239.0.

В C++ есть следующие базовые типы данных с плавающей запятой: float , double , long double .

Переменная типа double занимает в 2 раза больше места в памяти компьютера чем переменная типа float .

Так же переменная типа long double занимает в 2 раза больше места в памяти компьютера, чем переменная типа double .

6. Как описать переменную, которая принимает значение с плавающей запятой?

Пример описания переменных типа float , double , long double :

float f; double d; long double ld;

7. Как в переменную с плавающей запятой записать числовые значения?

Пример внесения числовых данных в переменные типы с плавающей запятой:

float f = -9928.45; // начальная инициализация double d; long double ld; d = 0.445332; // оператор присваивания ld = 3892923898239.030903; // оператор присваивания

8. Как перевести переменную типа float в тип int ?

Для этого используется операция приведения типов. В скобках нужно указать название типа к которому происходит приведение.

float a; int b; a = 8.457; b = (int ) a; // b = 8

При использовании операций приведения типов, нужно учитывать ограничения, которые накладываются на типы, которые занимают меньше места в памяти компьютера.

Например, переменная типа short int может представлять меньший диапазон чисел, чем переменные типов float , double . В следующему листинге происходит переполнение значения в переменной типа short int :

short int i; float f; f = 3990099.8; i = (int )f; // i = -7597 - переполнение

9. Как перевести переменную из типа int в тип double ?

Пример приведения с int в double :

int i; double d; i = 982; d = (double )i; // d = 982.0

10. Какие особенности использования данных типа char (символьных данных) в программе?

Данные типа char представляют символьное значение кода, введенного с клавиатуры. Код символа есть целое число.

Например, код символа ‘f’ равен значению 102 .

Фрагмент кода, в котором вычисляется код символа:

int code; char symbol; symbol = "f" ; code = (int )symbol; // code = 102

Данные типа char есть теми же целыми числами. Данные типа char занимают в памяти компьютера 1 байт.

Соотношение «символ-код» размещается в таблице символов Windows. Символы с кодами от 0 до 127 – это зарезервированные символы BIOS. Они включают наиболее употребляемые символы, символы цифр, символы латинской азбуки. Эти символы изменить нельзя.

Символы с кодами от 128 до 255 – это региональные символы, которые привязанные к конкретной азбуке того компьютера на котором установленная операционная система Windows.

11. Какие особенности использования данных типа bool (логический тип)?

Переменные типа bool могут принимать только два значения:

true – истина,

false – ложь.

Эти переменные используются для проверки логических выражений. Числовое значение true равно 1 . Числовое значение false равно 0 .

Фрагмент кода, который определяет числовые значения true и false :

int result; bool b; result = (int )true ; // result = 1 b = false ; result = (int )b; // result = 0

Фрагмент кода, который превращает типы int и float в bool :

int i; float f; bool b; i = 6; b = (bool )i; // b = True f = 0.0; b = (bool )f; // b = False

12. Как определить размер памяти, который занимает переменная данного типа?

Для этого используется операция sizeof() .

Фрагмент кода, который определяет размер некоторых типов данных:

int d; d = sizeof (char ); // d = 1 d = sizeof (unsigned int ); // d = 4 d = sizeof (float ); // d = 4 d = sizeof (double ); // d = 8

13. Каким образом осуществляется инициализация переменных разных типов?

int d = 28; float z = (float )2.85; char c = "k" ; String ^s = "Hello!" ; double r = -8.559;

14. Каким образом определить максимально допустимое (минимально допустимое) значение переменной определенного типа?

Чтобы определить максимально допустимое или минимально допустимое значение переменной некоторого типа в библиотеке .NET Framework используются свойства MaxValue и MinValue .

Примеры определения предельных значений переменных разных типов.

Для переменных типа int :

// тип int int i; long MaxInt; long MinInt; MaxInt = (long )i.MaxValue; // MaxInt = 2147483647 MinInt = (long )i.MinValue; // MinInt = -2147483648

Для переменных типа short int :

// тип short int short int si; int MaxInt; int MinInt; MaxInt = (int )si.MaxValue; // MaxInt = 32767 MinInt = (int )si.MinValue; // MinInt = -32768

Для переменных типа unsigned int :

// тип unsigned int unsigned int ui; unsigned int MaxInt; unsigned int MinInt; MaxInt = ui.MaxValue; // MaxInt = 4294967295 MinInt = ui.MinValue; // MinInt = 0

Для переменных типа float :

// тип float float f; float MaxF; float MinF; MaxF = f.MaxValue; // MaxF = 3.402823E+38 MinF = f.MinValue; // MinF = -3.402823E+38

Для переменных типа double :

// тип double double d; double MaxD; double MinD; Max = d.MaxValue; // Max = 1.79769313486232E+308 Min = d.MinValue; // Min = -1.79769313486232E+308

Для переменных типа char :

// тип char char c; int MaxC; int MinC; Max = (int )c.MaxValue; // Max = 127 Min = (int )c.MinValue; // Min = -128

15. Какие особенности использования типа enum ?

Тип enum – это перечислительный тип данных. В нем задаются мнемонические значения для множеств целых значений. Каждое мнемоническое значение имеет определенное содержание и представляется целым числом.

Пример использования типа enum для обозначения месяцев года:

enum months { January, February, March, April, May, June, July, August, September, October, November, December } mn; mn = January; // mn = 0 mn = March; // mn = 2 mn = September; // mn = 8

В приведенном примере описывается переменная с именем mn типа enum months . Мнемонические значения месяцев (January , February , …) начинаются с 0 (0 , 1 , 2 , …). Мнемоническому значению January соответствует целое значение 0 , мнемоническому значению February соответствует целое значение 1 , и т.д.

Итак, с помощью типа enum , в тексте программы можно использовать мнемонические обозначения для лучшей наглядности исходного кода.

Можно написать и так:

mn = (enum months)2; // mn = March mn = (enum months)11; // mn = December

16. Какие особенности применения типа void в программах на C ++ ?

Тип данных void используется в следующих случаях:

  • если нужно описать функцию, которая не возвращает никакого значения (см. пример);
  • если нужно описать функцию, которая не получает параметров (см. пример).

Пример . Функция MyFun() без параметров, которая не возвращает никакого значения (возвращает тип void ) и не получает параметров.

public : void MyFun(void ) { // тело функции // ... return; // возврат из функции, которая не возвращает значения } // вызов функции из программы ... MyFun(); ...

17. Можно ли объявлять переменную типа void в программе?

Нельзя, так как тип void не связан со значением.

Объявление переменной типа void приводит к ошибке компиляции с выводом сообщения:

"Illegal use of type void "

18. Какие особенности применения типа wchar _ t в Visual C ++ ?

Переменные типа char (смотрите предыдущие пункты) используются для сохранения 8-разрядных ASCII -символов.

Тип wchar_t используется для сохранения символов, которые входят в состав больших символьных наборов. Например, в китайской азбуке есть огромное количество символов. 8 разрядов недостаточно, чтобы представить весь набор символов китайской азбуки. Поэтому, если нужно использовать программу на международном рынке, целесообразно заменить тип char на wchar_t .

Пример использования типа wchar_t .

... wchar_t t; // для переменной t выделяется 2 байта памяти t = "s"; ...

Теги: Си переменные. char, int, unsigned, long, long long, float, double, long double, long float, lexical scoping. Объявление переменных. Область видимости. Инициализация переменных. Имена переменных. Экспоненциальная форма.

Переменные

П еременные используются для хранения значений (sic!). Переменная характеризуется типом и именем. Начнём с имени. В си переменная может начинаться с подчерка или буквы, но не с числа. Переменная может включать в себя символы английского алфавита, цифры и знак подчёркивания. Переменная не должна совпадать с ключевыми словами (это специальные слова, которые используются в качестве управляющих конструкций, для определения типов и т.п.)

auto double int struct
break else long switch
register typedef char extern
return void case float
unsigned default for signed
union do if sizeof
volatile continue enum short
while inline
А также ряд других слов, специфичных для данной версии компилятора, например far , near , tiny , huge , asm , asm_ и пр.

Например, правильные идентификаторы
a, _, _1_, Sarkasm, a_long_variable, aLongVariable, var19, defaultX, char_type
неверные
1a, $value, a-long-value, short

Си - регистрозависимый язык. Переменные с именами a и A, или end и END, или perfectDark и PerfectDarK – это различные переменные.

Типы переменных

Т ип переменной определяет

  • 1) Размер переменной в байтах (сколько байт памяти выделит компьютер для хранения значения)
  • 2) Представление переменной в памяти (как в двоичном виде будут расположены биты в выделенной области памяти).
В си несколько основных типов. Разделим их на две группы - целые и числа с плавающей точкой.

Целые

  • char - размер 1 байт. Всегда! Это нужно запомнить.
  • short - размер 2 байта
  • int - размер 4 байта
  • long - размер 4 байта
  • long long - размер 8 байт.
Здесь следует сделать замечание. Размер переменных в си не определён явно, как размер в байтах. В стандарте только указано, что

char <= short <= int <= long <= long long

Указанные выше значения характерны для компилятора VC2012 на 32-разрядной машине. Так что, если ваша программа зависит от размера переменной, не поленитесь узнать её размер.

Теперь давайте определим максимальное и минимальное число, которое может хранить переменная каждого из типов. Числа могут быть как положительными, так и отрицательными. Отрицательные числа используют один бит для хранения знака. Иногда знак необходим (например, храним счёт в банке, температуру, координату и т.д.), а иногда в нём нет необходимости (вес, размер массива, возраст человека и т.д.). Для этого в си используется модификатор типа signed и unsigned. unsigned char - все 8 бит под число, итого имеем набор чисел от 00000000 до 11111111 в двоичном виде, то есть от 0 до 255 signed char от -128 до 128. В си переменные по умолчанию со знаком. Поэтому запись char и signed char эквивалентны.

Таб. 1 Размер целых типов в си.
Тип Размер, байт Минимальное значение Максимальное значение
unsigned char 1 0 255
signed char
(char)
1 -128 127
unsigned short 2 0 65535
signed short
(short)
2 -32768 32767
unsigned int
(unsigned)
4 0 4294967296
signed int
(int)
4 -2147483648 2147483647
unsigned long 4 0 4294967296
signed long
(long)
4 -2147483648 2147483647
unsigned long long 8 0 18446744073709551615
signed long long
(long long)
8 -9223372036854775808 9223372036854775807

sizeof

В си есть оператор, который позволяет получить размер переменной в байтах. sizeof переменная, или sizeof(переменная) или sizeof(тип). Это именно оператор, потому что функция не имеет возможности получить информацию о размере типов во время выполнения приложения. Напишем небольшую программу чтобы удостовериться в размерах переменных.

#include #include int main() { char c; short s; int i; long l; long long L; //Вызов sizeof как "функции" printf("sizeof(char) = %d\n", sizeof(c)); printf("sizeof(short) = %d\n", sizeof(s)); printf("sizeof(int) = %d\n", sizeof(i)); printf("sizeof(long) = %d\n", sizeof(l)); printf("sizeof(long long) = %d\n", sizeof(L)); //Вызов как оператора printf("sizeof(char) = %d\n", sizeof c); printf("sizeof(short) = %d\n", sizeof s); printf("sizeof(int) = %d\n", sizeof i); printf("sizeof(long) = %d\n", sizeof l); printf("sizeof(long long) = %d\n", sizeof L); _getch(); }

(Я думаю ясно, что переменные могут иметь любое валидное имя). Эту программу можно было написать и проще

#include #include int main() { printf("sizeof(char) = %d\n", sizeof(char)); printf("sizeof(short) = %d\n", sizeof(short)); printf("sizeof(int) = %d\n", sizeof(int)); printf("sizeof(long) = %d\n", sizeof(long)); printf("sizeof(long long) = %d\n", sizeof(long long)); //нельзя произвести вызов sizeof как оператора для имени типа //sizeof int - ошибка компиляции _getch(); }

В си один и тот же тип может иметь несколько названий
short === short int
long === long int
long long === long long int
unsigned int === unsigned

Типы с плавающей точкой

  • float - 4 байта,
  • long float - 8 байт
  • double - 8 байт
  • long double - 8 байт.
Здесь также приведены значения для VC2012, по стандарту размер типов float <= long float <= double <= long double все числа с плавающей точкой - со знаком.

Переполнение переменных

Си не следит за переполнением переменных. Это значит, что постоянно увеличивая значение, скажем, переменной типа int в конце концов мы "сбросим значение"

#include #include void main() { unsigned a = 4294967295; int b = 2147483647; //Переполнение беззнакового типа printf("%u\n", a); a += 1; printf("%u", a); //Переполнение знакового типа printf("%d\n", b); b += 1; printf("%d", b); getch(); }

Вообще, поведение при переполнении переменной определено только для типа unsigned : Беззнаковое целое сбросит значение. Для остальных типов может произойти что угодно, и если вам необходимо следить за переполнением, делайте это вручную, проверяя аргументы, либо используйте иные способы, зависящие от компилятора и архитектуры процессора.

Постфиксное обозначение типа

П ри работе с числами можно с помощью литер в конце числа явно указывать его тип, например

  • 11 - число типа int
  • 10u - unsigned
  • 22l или 22L - long
  • 3890ll или 3890LL - long long (а также lL или Ll)
  • 80.0f или 80.f или 80.0F - float (обязательно наличие десятичной точки в записи)
  • 3.0 - число типа double
Экспоненциальная форма записи также по умолчанию обозначает число типа double. #include #include int main() { printf("sizeof(int) = %d\n", sizeof(10)); printf("sizeof(unigned) = %d\n", sizeof(10u)); printf("sizeof(long) = %d\n", sizeof(10l)); printf("sizeof(long long) = %d\n", sizeof(10ll)); printf("sizeof(float) = %d\n", sizeof(10.f)); printf("sizeof(double) = %d\n", sizeof(10.)); printf("sizeof(double) = %d\n", sizeof(10e2)); getch(); }

Следующий код, однако, не будет приводить к ошибкам, потому что происходит неявное преобразование типа

Int a = 10u; double g = 3.f;

Шестнадцатеричный и восьмеричный формат

В о время работы с числами можно использовать шестнадцатеричный и восьмеричный формат представления. Числа в шестнадцатиричной системе счисления начинаются с 0x, в восьмеричной системе с нуля. Соответственно, если число начинается с нуля, то в нём не должно быть цифр выше 7:

#include #include void main() { int x = 0xFF; int y = 077; printf("hex x = %x\n", x); printf("dec x = %d\n", x); printf("oct x = %o\n", x); printf("oct y = %o\n", y); printf("dec y = %d\n", y); printf("hex y = %x", y); getch(); }

Экспоненциальная форма представления чисел

Э кспоненциальной формой представления числа называют представление числа в виде M e ± p , где M - мантиса числа, p - степень десяти. При этом у мантисы должен быть один ненулевой знак перед десятичной запятой.
Например 1.25 === 1.25e0, 123.5 === 1.235e2, 0.0002341 === 2.341e-4 и т.д.
Представления 3.2435e7 эквивалентно 3.2435e+7
Существеут и другое представление ("инженерное"), в котором степень должна быть кратной тройке. Например 1.25 === 1.25e0, 123.5 === 123.5e0, 0.0002341 === 234.1e-6, 0.25873256 === 258.73256e-3 и т.д.

Объявление переменных

В си переменные объявляются всегда в начале блока (блок - участок кода,ограниченный фигурными скобками)

<возвращаемый тип> <имя функции> (<тип> <аргумент>[, <тип> <аргумент>]) { объявление переменных всё остальное }

При объявлении переменной пишется её тип и имя.

Int a; double parameter;

Можно объявить несколько переменных одного типа, разделив имена запятой

Long long arg1, arg2, arg3;

Например

#include #include int main() { int a = 10; int b; while (a>0){ int z = a*a; b += z; } }

Здесь объявлены переменные a и b внутри функции main , и переменная z внутри тела цикла. Следующий код вызовет ошибку компиляции

Int main() { int i; i = 10; int j; }

Это связано с тем, что объявление переменной стоит после оператора присваивания. При объявлении переменных можно их сразу инициализировать.
int i = 0;
При этом инициализация при объявлении переменной не считается за отдельный оператор, поэтому следующий код будет работать

Int main() { int i = 10; int j; }

Начальное значение переменной

О чень важно запомнить, что переменные в си не инициализируются по умолчанию нулями, как во многих других языках программирования. После объявления переменной в ней хранится "мусор" - случайное значение, которое осталось в той области памяти, которая была выделена под переменную. Это связано, в первую очередь, с оптимизацией работы программы: если нет необходимости в инициализации, то незачем тратить ресурсы для записи нулей (замечание: глобальные переменные инициализируются нулями, почему так, читайте в этой статье).

#include #include int main() { int i; printf("%d", i); getch(); }

Если выполнять эту программу на VC, то во время выполнения вылетит предупреждение
Run-Time Check Failure #3 - The variable "i" is being used without being initialized.
Если нажать "Продолжить", то программа выведет "мусор". В многих других компиляторах при выполнении программы не будет предупреждения.

Область видимости переменной

П еременные бывают локальными (объявленными внутри какой-нибудь функции) и глобальными. Глобальная переменная видна всем функциям, объявленным в данном файле. Локальная переменная ограничена своей областью видимости. Когда я говорю, что переменная "видна в каком-то месте", это означает, что в этом месте она определена и её можно использовать. Например, рассмотрим программу, в которой есть глобальная переменная

#include #include int global = 100; void foo() { printf("foo: %d\n", global); } void bar(int global) { printf("bar: %d\n", global); } int main() { foo(); bar(333); getch(); }

Будет выведено
foo: 100
bar: 333
Здесь глобальная переменная global видна всем функциям. Но аргумент функции затирает глобальную переменную, поэтому при передаче аргумента 333 выводится локальное значение 333.
Вот другой пример

#include #include int global = 100; int main() { int global = 555; printf("%d\n", global); getch(); }

Программа выведет 555. Также, как и в прошлом случае, локальная переменная "важнее". Переменная, объявленная в некоторой области видимости не видна вне её, например

#include #include int global = 100; int main() { int x = 10; { int y = 30; printf("%d", x); } printf("%d", y); }

Этот пример не скомпилируется, потому что переменная y существует только внутри своего блока.
Вот ещё пример, когда переменные, объявленные внутри блока перекрывают друг друга

#include #include int global = 100; int main() { int x = 10; { int x = 20; { int x = 30; printf("%d\n", x); } printf("%d\n", x); } printf("%d\n", x); getch(); }

Программа выведет
30
20
10
Глобальных переменных необходимо избегать. Очень часто можно услышать такое. Давайте попытаемся разобраться, почему. В ваших простых проектах глобальные переменные выглядят вполне нормально. Но представьте, что у вас приложение, которое

  • 1) Разрабатывается несколькими людьми и состоит из сотен тысяч строк кода
  • 2) Работает в несколько потоков

Во-первых, глобальная переменная, если она видна всем, может быть изменена любой частью программы. Вы изменили глобальную переменную, хотите её записать, а другая часть программы уже перезаписала в неё другое значение (на самом деле это целый класс проблем, которые возникают в многопоточной среде). Во-вторых, при больших размерах проекта не уследить, кто и когда насоздавал глобальных переменных. В приведённых выше примерах видно, как переменные могут перекрывать друг друга, то же произойдёт и в крупном проекте.

Безусловно, есть ситуации, когда глобальные переменные упрощают программу, но такие ситуации случаются не часто и не в ваших домашних заданиях, так что НЕ СОЗДАВАЙТЕ ГЛОБАЛЬНЫХ ПЕРЕМЕННЫХ!
Переменные могут быть не только целочисленными и с плавающей точкой. Существует множество других типов, которые мы будем изучать в дальнейшем.

Целый тип char занимает в памяти 1 байт (8 бит) и позволяет выразить в двоичной системе счисления 2^8 значений=256. Тип char может содержать как положительные, так и отрицательные значения. Диапазон изменения значений составляет от -128 до 127.

uchar

Целый тип uchar также занимает в памяти 1 байт, как и тип char, но в отличие от него, uchar предназначен только для положительных значений. Минимальное значение равно нулю, максимальное значение равно 255. Первая буква u в названии типа uchar является сокращением слова unsigned (беззнаковый).

short

Целый тип short имеет размер 2 байта(16 бит) и, соответственно, позволяет выразить множество значений равное 2 в степени 16: 2^16=65 536. Так как тип short является знаковым и содержит как положительные, так и отрицательные значения, то диапазон значений находится между -32 768 и 32 767.

ushort

Беззнаковым типом short является тип ushort, который также имеет размер 2 байта. Минимальное значение равно 0, максимальное значение 65 535.

int

Целый тип int имеет размер 4 байта (32 бита). Минимальное значение -2 147 483 648, максимальное значение 2 147 483 647.

uint

Беззнаковый целый тип uint занимает в памяти 4 байта и позволяет выражать целочисленные значения от 0 до 4 294 967 295.

long

Целый тип long имеет размер 8 байт (64 бита). Минимальное значение -9 223 372 036 854 775 808, максимальное значение 9 223 372 036 854 775 807.

ulong

Целый тип ulong также занимает 8 байт и позволяет хранить значения от 0 до 18 446 744 073 709 551 615.

Примеры:

char ch= 12 ;
short sh=- 5000 ;
int in= 2445777 ;

Так как беззнаковые целые типы не предназначены для хранения отрицательных значений, то попытка установить отрицательное значение может привести к неожиданным последствиям. Вот такой невинный скрипт приведет к бесконечному циклу:

Правильно будет так:

Результат:

Ch= -128 u_ch= 128
ch= -127 u_ch= 129
ch= -126 u_ch= 130
ch= -125 u_ch= 131
ch= -124 u_ch= 132
ch= -123 u_ch= 133
ch= -122 u_ch= 134
ch= -121 u_ch= 135
ch= -120 u_ch= 136
ch= -119 u_ch= 137
ch= -118 u_ch= 138
ch= -117 u_ch= 139
ch= -116 u_ch= 140
ch= -115 u_ch= 141
ch= -114 u_ch= 142
ch= -113 u_ch= 143
ch= -112 u_ch= 144
ch= -111 u_ch= 145
...

В этом уроке вы узнаете алфавит языка C++ , а также какие типы данных может обрабатывает программа на нем. Возможно, это не самый увлекательный момент, но эти знания необходимы!Кроме того, начав изучать любой другой язык программирования, Вы с большей уверенностью пройдете аналогичную стадию обучения. Программа на языке C++ может содержать следующие символы:

  • прописные, строчные латинские буквы A, B, C…, x, y, z и знак подчеркивания;
  • арабские цифры от 0 до 9;
  • специальные знаки: { } , | , () + - / % * . \ ‘ : ? < > = ! & # ~ ; ^
  • символы пробела, табуляции и перехода на новую строку.

В тесте программы можно использовать комментарии . Если текст с двух символов «косая черта» // и заканчивается символом перехода на новую строку или заключен между символами /* и */, то компилятор его игнорирует.

Данные в языке C++

Для решения задачи в любой программе выполняется обработка каких-либо данных. Они могут быть различных типов: целые и вещественные числа, символы, строки, массивы. Данные в языке C++ принято описывать в начале функции. К основным типам данных языка относят:

Для формирования других типов данных используют основные и так называемые спецификаторы. В C++ определенны четыре спецификатора типов данных:

  • short - короткий;
  • long - длинный;
  • signed - знаковый;
  • unsigned - беззнаковый.

Целочисленный тип

Переменная типа int в памяти компьютера может занимать либо 2, либо 4 байта. Это зависит разрядности процессора. По умолчанию все целые типы считаются знаковыми, то есть спецификатор signed можно не указывать. Спецификатор unsigned позволяет представлять только положительные числа. Ниже представлены некоторые диапазоны значений целого типа

Тип Диапазон Размер
int -2147483648…2147483647 4 байта
unsigned int 0…4294967295 4 байта
signed int -2147483648…2147483647 4 байта
short int -32768…32767 2 байта
long int -2147483648…2147483647 4 байта
unsigned short int 0…65535 2 байта

Вещественный тип

Число с плавающей точкой представлено в форме mE +- p, где m - мантисса (целое или дробное число с десятичной точкой), p - порядок (целое число). Обычно величины типа float занимают 4 байта, а double 8 байт. Таблица диапазонов значений вещественного типа:

float 3,4E-38…3,4E+38 4 байта
double 1,7E-308…1,7E+308 8 байт
long double 3,4E-4932…3,4E+4932 8 байт

Логический тип

Переменная типа bool может принимать только два значения true (истина) или fasle (ложь). Любоезначение, не равное нулю, интерпретируется как true. Значение false представлено в памяти как 0.

Тип void

Множество значений этого типа пусто. Он используется для определения функций, которые не возвращают значения, для указания пустого списка аргументов функции, как базовый тип для указателей и в операции приведения типов.

Преобразование типов данных

В C++ различают два вида преобразования типов данных: явное и неявное.

  • Неявное преобразование происходит автоматически. Это выполняется во время сравнения, присваивания или вычисления выражения различных типов. Например, следующая программа выведет на консоль значение типа float.

#include "stdafx.h" #include using namespace std; int main() { int i=5; float f=10.12; cout<>void"); return 0; }

#include "stdafx.h"

#include

using namespace std ;

int main ()

int i = 5 ; float f = 10.12 ;

cout << i / f ;

system ("pause>>void" ) ;

return 0 ;

Наивысший приоритет получает тот тип, при котором информация теряется менее всего. Не стоит злоупотреблять неявным преобразованием типов, так как могут возникнуть разного рода непредвиденные ситуации.

  • Явное преобразование в отличие от неявного осуществляется программистом. Существует несколько способов такого преобразования:
  1. Преобразование в стили C : (float ) a
  2. Преобразование в стили C++ : float ()

Также приведения типов может осуществляться при помощи следующих операций:

static_cast <> () const_cast <> () reinterpret_cast <> () dynamic_cast <> ()

static_cast <> ()

const_cast <> ()

reinterpret_cast <> ()

dynamic_cast <> ()

static_cas - осуществляет преобразование связанных типов данных. Этот оператор приводит типы по обычным правилам, что может потребоваться в случае, когда компилятор не выполняет автоматическое преобразование. Синтаксис будет выглядеть так:

Тип static_cast <Тип> (объект);

С помощью static_cast нельзя убрать константность у переменной, но это по силам следующему оператору. const_cast - применяется только тогда, когда нужно снять константность у объекта. Синтаксис будет выглядеть следующим образом:

Тип const_cast < Тип > (объект );

reinterpret_cast - применяется для преобразования разных типов, целых к указателю и наоборот. Если вы увидели новое слово «указатель» - не пугайтесь! это тоже тип данных, но работать с ним Мы будем не скоро. Синтаксис тут такой же как, у ранее рассмотренных операторах:

Тип reinterpret _cast < Тип > (объект );

dynamic_cast - используется для динамического преобразования типов, реализует приведение указателей или ссылок. Синтаксис:

Тип dynamic _cast < Тип > (объект );

Управляющие символы

С некоторыми из этих самых «управляющих символов» Вы уже знакомы (например, с \n ). Все они начинаются с обратного «слеша», а также обрамляются двойными кавычками.

Изображение

Шестнадцатеричный код

Наименование

Звуковой сигнал бипера

Возврат на шаг

Перевод страницы (формата)

Перевод строки

Возврат каретки

Горизонтальная табуляция

Вертикальная табуляция

Типы данных

Типы данных имеют особенное значение в C#, поскольку это строго типизированный язык. Это означает, что все операции подвергаются строгому контролю со стороны компилятора на соответствие типов, причем недопустимые операции не компилируются. Следовательно, строгий контроль типов позволяет исключить ошибки и повысить надежность программ. Для обеспечения контроля типов все переменные, выражения и значения должны принадлежать к определенному типу. Такого понятия, как "бестиповая" переменная, в данном языке программирования вообще не существует. Более того, тип значения определяет те операции, которые разрешается выполнять над ним. Операция, разрешенная для одного типа данных, может оказаться недопустимой для другого.

В C# имеются две общие категории встроенных типов данных: типы значений и ссылочные типы . Они отличаются по содержимому переменной. Концептуально разница между ними состоит в том, что тип значения (value type) хранит данные непосредственно, в то время как ссылочный тип (reference type) хранит ссылку на значение.

Эти типы сохраняются в разных местах памяти: типы значений сохраняются в области, известной как стек , а ссылочные типы - в области, называемой управляемой кучей .

Давайте разберем типы значений.

Целочисленные типы

В C# определены девять целочисленных типов: char, byte, sbyte, short, ushort, int, uint, long и ulong . Но тип char применяется, главным образом, для представления символов и поэтому рассматривается отдельно. Остальные восемь целочисленных типов предназначены для числовых расчетов. Ниже представлены их диапазон представления чисел и разрядность в битах:

Целочисленные типы C#
Тип Тип CTS Разрядность в битах Диапазон
byte System.Byte 8 0:255
sbyte System.SByte 8 -128:127
short System.Int16 16 -32768: 32767
ushort System.UInt16 16 0: 65535
int System.Int32 32 -2147483648: 2147483647
uint System.UInt32 32 0: 4294967295
long System.Int64 64 -9223372036854775808: 9223372036854775807
ulong System.UInt64 64 0: 18446744073709551615

Как следует из приведенной выше таблицы, в C# определены оба варианта различных целочисленных типов: со знаком и без знака. Целочисленные типы со знаком отличаются от аналогичных типов без знака способом интерпретации старшего разряда целого числа. Так, если в программе указано целочисленное значение со знаком, то компилятор C# сгенерирует код, в котором старший разряд целого числа используется в качестве флага знака. Число считается положительным, если флаг знака равен 0, и отрицательным, если он равен 1.

Отрицательные числа практически всегда представляются методом дополнения до двух, в соответствии с которым все двоичные разряды отрицательного числа сначала инвертируются, а затем к этому числу добавляется 1.

Вероятно, самым распространенным в программировании целочисленным типом является тип int . Переменные типа int нередко используются для управления циклами, индексирования массивов и математических расчетов общего назначения. Когда же требуется целочисленное значение с большим диапазоном представления чисел, чем у типа int, то для этой цели имеется целый ряд других целочисленных типов.

Так, если значение нужно сохранить без знака, то для него можно выбрать тип uint , для больших значений со знаком - тип long , а для больших значений без знака - тип ulong . В качестве примера ниже приведена программа, вычисляющая расстояние от Земли до Солнца в сантиметрах. Для хранения столь большого значения в ней используется переменная типа long:

Using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication1 { class Program { static void Main(string args) { long result; const long km = 149800000; // расстояние в км. result = km * 1000 * 100; Console.WriteLine(result); Console.ReadLine(); } } }

Всем целочисленным переменным значения могут присваиваться в десятичной или шестнадцатеричной системе обозначений. В последнем случае требуется префикс 0x:

Long x = 0x12ab;

Если возникает какая-то неопределенность относительно того, имеет ли целое значение тип int, uint, long или ulong, то по умолчанию принимается int. Чтобы явно специфицировать, какой другой целочисленный тип должно иметь значение, к числу можно добавлять следующие символы:

Uint ui = 1234U; long l = 1234L; ulong ul = 1234UL;

U и L можно также указывать в нижнем регистре, хотя строчную L легко зрительно спутать с цифрой 1 (единица).

Типы с плавающей точкой

Типы с плавающей точкой позволяют представлять числа с дробной частью. В C# имеются две разновидности типов данных с плавающей точкой: float и double . Они представляют числовые значения с одинарной и двойной точностью соответственно. Так, разрядность типа float составляет 32 бита, что приближенно соответствует диапазону представления чисел от 5E-45 до 3,4E+38. А разрядность типа double составляет 64 бита, что приближенно соответствует диапазону представления чисел от 5E-324 до 1,7Е+308.

Тип данных float предназначен для меньших значений с плавающей точкой, для которых требуется меньшая точность. Тип данных double больше, чем float, и предлагает более высокую степень точности (15 разрядов).

Если нецелочисленное значение жестко кодируется в исходном тексте (например, 12.3), то обычно компилятор предполагает, что подразумевается значение типа double. Если значение необходимо специфицировать как float, потребуется добавить к нему символ F (или f):

Float f = 12.3F;

Десятичный тип данных

Для представления чисел с плавающей точкой высокой точности предусмотрен также десятичный тип decimal , который предназначен для применения в финансовых расчетах. Этот тип имеет разрядность 128 бит для представления числовых значений в пределах от 1Е-28 до 7,9Е+28. Вам, вероятно, известно, что для обычных арифметических вычислений с плавающей точкой характерны ошибки округления десятичных значений. Эти ошибки исключаются при использовании типа decimal, который позволяет представить числа с точностью до 28 (а иногда и 29) десятичных разрядов. Благодаря тому что этот тип данных способен представлять десятичные значения без ошибок округления, он особенно удобен для расчетов, связанных с финансами:

Using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication1 { class Program { static void Main(string args) { // *** Расчет стоимости капиталовложения с *** // *** фиксированной нормой прибыли*** decimal money, percent; int i; const byte years = 15; money = 1000.0m; percent = 0.045m; for (i = 1; i

Результатом работы данной программы будет:

Символы

В C# символы представлены не 8-разрядным кодом, как во многих других языках программирования, например С++ , а 16-разрядным кодом, который называется юникодом (Unicode) . В юникоде набор символов представлен настолько широко, что он охватывает символы практически из всех естественных языков на свете. Если для многих естественных языков, в том числе английского, французского и немецкого, характерны относительно небольшие алфавиты, то в ряде других языков, например китайском, употребляются довольно обширные наборы символов, которые нельзя представить 8-разрядным кодом. Для преодоления этого ограничения в C# определен тип char , представляющий 16-разрядные значения без знака в пределах от 0 до 65 535. При этом стандартный набор символов в 8-разрядном коде ASCII является подмножеством юникода в пределах от 0 до 127. Следовательно, символы в коде ASCII по-прежнему остаются действительными в C#.